
UCRL-TM-229497

RadSrc Library and Application Manual

Larry Hiller, Tom Gosnell, Jeff Gronberg, Doug Wright∗

Lawrence Livermore National Laboratory

November 8, 2007

Abstract

The RadSrc (“Rad-Source”) suite provides computational support for applications addressing ra-
dioactive decay and emission of radiation from decay. The RadSrc library, libradsrc, computes the
concentrations of decay products given an initial concentration and age, and photon radiation due to
continuing decay of those products. Written in C++, the library provides an object-oriented interface to
computational results, as well as its underlying database of isotope information. The library also pro-
vides a simplified interface in FORTRAN and C++ intended for use in Monte Carlo applications, and
can accommodate varying levels of integration with other code bases. A stand-alone application,radsrc,
serves as an interactive user interface to the library. The RadSrc suite is open source and licensed under
the BSD license and can be downloaded fromhttp://nuclear.llnl.gov/simulation.

1 Introduction

Many applications exist that require the calculation of an ideal theoretical radiation spectrum resulting from
the natural decay of radioactive elements. Often this idealize source spectrum is modified through Monte
Carlo simulation of radiation transport to account for absorption and scattering of radiation in matter. Three
such Monte Carlo transport codes, MCNP/X[1], GEANT4[2], and COG[3] allow the user to specify cus-
tom radiation sources in the transport simulation. This nevertheless required users to manually specify the
radiation source distributions and/or supply samples fromthe distributions.

A previous solution, GAMGEN[4], automated the calculationof decay product concentrations in an
aged material containing radioisotopes and the distribution of photons emitted by nuclear decay. Despite
the added convenience of having the photon distributions computed, manual intervention was required to
communicate this information into the Monte Carlo codes.

The RadSrc Suite has been developed to incorporate this calculation directly into the Monte Carlo codes
themselves. Written in modern C++, the RadSrc librarylibradsrc takes advantage of modern techniques
to streamline the calculation and modularize the functionsof database handling, decay product and photon
calculations, and provide flexible interfaces. The librarysimultaneously provides a rich interface to the
library capabilities for C++ applications while it also provides a slim interface to FORTRAN Monte Carlo
applications. The object-oriented design facilitates theadaptation of new sources of isotope data beyond
that provided in the RadSrc distribution. A stand-alone application, radsrc, is included to reproduce the
functionality of GAMGEN using the RadSrc library.

∗Contact info: wright20@llnl.gov, 925-423-2347

1

238U 234T h 234mP a 234U 230T h 226R a 222R n

214B i

218Po

218At

210P b

210T l

210Bi 210P o

206P b

214R n 214P o

206Hg 206T l 214P b

234P a

Figure 1: Decay paths for238U and its daughter isotopes, including at most a single alphaand a single beta
decay. There are 30 possible paths from238U to 206Pb.

RadSrc accepts an initial isotope mixture and desired age and computes the concentrations of the decay
products, and photon emission spectrum from radioactive isotopes in the aged mixture. The user has the
opportunity to select certain lines of interest and bin the remainder; this can simplify comparison of the
computed spectrum to experimental data. Several binning options are provided, including pre-computed
binning schemes TART and MORSE, uniform binning and binningproportional to a square-root of energy
function. The user is similarly free to choose any of these binning schemes for the computed bremsstrahlung
radiation (if present) and the custom tally bins for the MCNPand MCNP/X transport codes.

The RadSrc Suite and its data has been released under the BSD open source license. Users are free
to incorporate RadSrc functionality into their own applications, or adjust and enhance the isotope database
with new isotopes, new decay modes, or improved values.

2 Computation of Decay Products

Radioisotopes can decay into other isotopes with lower average binding energy per nucleon[5]. Isotopes
will typically decay by one of several processes:alpha decay, which emits anα particle (helium nucleus)
and reduces both the atomic number and atomic mass by two;beta-minusdecay, with emission of aβ−

particle (electron), which increases the atomic number; orbeta decay with (beta-plus) or without (electron
capture) emission of aβ+ particle (positron), either of which decreases the atomic number.

Radioactive decay is frequently accompanied by emission ofphotons. The parent isotope may decay to
an excited state, which enter the ground state by emitting one or more gamma rays. The atomic electrons
may also emit x rays as they re-adjust to the new nuclear potential. If a charged particle is emitted in
the decay, it may also emit photon radiation as it travels through condensed matter, calledbremsstrahlung
radiation[5].

A radioisotope may decay by both alpha and beta modes. Also, aparticular decay mode may decay
to both the ground state and one or more excited states of the daughter nucleus, with different gamma and
bremsstrahlung emission. These are termeddecay branches. The probability of any particular decay branch
occurring is thebranch fraction. There are further variations of these decays. For example,a decay to an
excited state may result in emission of a neutron. The rates of decay for all the decay branches sum to the
overalldecay rate. Thehalf-life, ln2 divided by the overall decay rate, is the time when half of the atoms of
a radioisotope have decayed.

A radioisotope may decay into one or more isotopes that are themselves radioactive. As these daughter
isotopes decay into other radioisotopes, a chain of decays is followed. This chain will branch at isotopes
with multiple significant decay, and often rejoin when two paths contain the same alpha and beta decays but
in a different order. The decay chain of238U is shown in Figure 1 as a typical example.

2

As time progresses, the numbers of atoms of the daughter isotopes rise and fall. Since the half-lives of
isotopes in the decay chain range over many orders of magnitude, certain isotopes will come to dominate
the decay of other isotopes, and the concentrations of theseisotopes will be fixed to a nearly constant ratio.
This is termedsecular equilibrium. One may infer the presence and concentration of an isotope that does
not emit photons by detecting and measuring the intensity ofphotons emitted by another isotope that is in
secular equilibrium with the hidden isotope. To do this, we must calculate the isotope ratio at the time of
measurement.

Bateman derived the closed-form solution to the differential equations governing radioactive decay
through the use of Laplace transforms in 1910[6][7]. The form of the solution lends itself to calculation
by recursion. Without loss of generality, we can reduce the problem of multiple initial parent isotopes to
independent problems with a single parent isotope and sum the individual solutions. Each parent isotope is
the root of a directed acyclic graph with decay products as nodes. Further, we can consider each path in the
directed graph independently of the other paths and sum the solutions for each linear decay chain. These
decompositions are made possible by the linearity of the original system of differential equations.

Consider the following system of equations describing a particular decay path:

N′
0(t) = −λ0N0(t) (1)

N′
i (t) = fi−1λi−1Ni−1(t)−λiNi(t) (2)

Ni(0) =

{

1 i = 0
0 i > 0

(3)

In these expressions,Ni(t) is the time dependent concentration of isotopei, λi is the decay constant for
that isotope, andfi is the branch probability for the particular decay of isotope i given in this chain. It is
readily verified by substitution that this system has solutions of the form:1

Ni(t) =
i

∑
j=0

Ai, je
−λ j t (4)

with

A0,0 = 1

Ai, j =
fi−1λi−1

λi −λ j
Ai−1, j ; 0≤ j < i

Ai,i = −
i−1

∑
j=0

Ai, j

(5)

This recursive formulation is particularly amenable to calculation with dynamic programming tech-
niques. The decay graph is traversed using the lists of decaymodes provided by the isotope database. Each
branch is followed in turn by recursively calling the calculation routine with the branch fraction and daughter
isotopes applicable to that branch, and the constantsAi, j for the branching isotope. Upon reaching a stable
isotope, the recursive functions return to each branch point, then following the next branch until no branches
remain. This avoids re-computing the constants for all the isotopes preceding a branching decay.

The pairs of constantsAi, j and decay constantsλ j are stored in a mapping as they are computed. Terms
associated with the sameλ j are summed as all possible decay paths to a particular daughter isotope are
encountered. At the conclusion of the calculation, the mapping holds all contributing exponential terms to
the time dependent concentration of each isotope.

1This form implicitly assumes that all decay constants are distinct. Although this is true in general for nuclear decay sequences,
libradsrc will exit if presented with a contrived example containing identical decay constants.

3

3 The RadSrc Library

Four components comprise the RadSrc library,libradsrc:

• isotope database management,

• decay product calculations,

• photon intensity calculations,

• and interfacing routines.

Libradsrc is written in C++ and employs an object-oriented design. Users who are solely interested in
obtaining photon distributions for Monte Carlo simulations will be satisfied by the simplified FORTRAN
and C++ interfaces presented. Other users of the library maydirectly interface with the library objects to
access the isotope database or the full capabilities of decay product and photon calculation routines. Details
of the library API are presented in the appendix.

The required information about isotopes is provided by theCIsotopeDatabaseclass. This class contains
physical information about isotopes such as mass and half-life; a listing of all decay modes, their branch
fractions, and daughter isotope; and a listing of all gamma rays and x rays produced by each decay. The class
provides iterators to list all decays and photons in an isotope record. Isotope databases are in turn managed
by theCDatabaseManager. TheCDatabaseManagermakes it possible to obtain isotope information from
different data suppliers as well as accommodate different storage mechanisms.

Decay product calculations are handled by theCDecayComputerclass. The object is configured with
an initial atomic fractions of isotopes and the desired age.Also, an isotope database is selected. After
performing the decay product calculation, the object provides a listing of a decay products, their concen-
trations, the decays producing the products, and the ultimate parent isotope(s) present in the initial mixture
that yielded each decay product. Users may create multipleCDecayComputerobjects to address multiple
sources in the same calculation.

Photon intensity calculations are handled by theCPhotonComputer class. This object is associated
with a CDecayComputerobject when it is created. This object takes the aged isotopeconcentrations and
computes the discrete x ray and gamma ray emissions listed inthe isotope database for each decay mode of
each isotope present. It also computes a binned bremsstrahlung distribution when applicable if the necessary
data is present in the isotope database. ACPhotonComputer object provides a list of all the photon lines,
sorted by either energy or intensity, as well as the decays that produced the photons and the ultimate parent
isotope(s) in the initial mixture. This object also permitssampling from the photon distribution using a user-
supplied random number generator.

Users will obtain the greatest utility of the library by directly employing the aforementioned objects.
However, we anticipate that many users will simply want to obtain the aged mixture concentrations and
sample photons from decay sources in the mixtures. To that end, we provide a simplified interface to both
FORTRAN/C and C++. The simplified interface encapsulates the CPhotonComputer andCDecayCom-
puter classes, handles initialization, and interfaces with the user’s code subject to most of the limitations
of FORTRAN 77. The ability to address independent mixture calculations is retained in the FORTRAN
environment by providing an opaque handle to the user upon initialization. This handle is passed back to
the library in every function call.

Initialization of the library requires special attention.Users attempting to integratelibradsrc into an
application with controlled access to the source code may belimited in ways they can communicate infor-
mation to the library. Therefore we have provided four mechanisms for initializing the library:

4

• Hard-coded initialization in the user’s own code usingRSADDISOTOPE() andRSMIX().

• Passing character data that has been incorporated into the application’s I/O and initialization routines
on to the library one line at a time usingRSADDCONFIG() andRSSOURCECONFIG().

• Hard-coding the filename of a configuration file into the user’s own code usingRSLOADCONFIG().

• Relying on environment variables to locate both the isotopedata and the problem configuration.

With these four mechanisms available,libradsrc can accommodate any level of integration with the user’s
application.

4 RadSrc application

The calculation of radioactive decay products, although straightforward, is well suited for automation. The
RadSrc library combines radioisotope data, x-ray and gamma-ray line catalogues, and measured bremsstrahlung
spectra to automatically compute the photon emission from an aged radiological sample. The binary pro-
gramradsrc is the interactive user-interface for computing photon intensity distributions. It is designed to
duplicate the output and essential functionality of the GAMGEN application, using the RadSrc library to
perform the calculations.

Application features:

• Calculation of decay product concentrations given an initial isotope mixture and the age

• List of gamma and x-ray photons produced by radioactive decay, as well as the particular decay(s)
generating each photon line and the initial isotope responsible for the presence of the line

• Sorted output of photons by energy and intensity per gram

• Bremsstrahlung background for the U-238 decay family

• Computes bin structure for separate tally of scattered and unscattered photons during transport simu-
lation

• Flexible selection of binning methods for photon lines, bremsstrahlung photons, and scattered photon
tally

• Outputs photon lines, bremsstrahlung photons, and tally bin structures in MCNP-compatible format

• Written in portable C++ language

4.1 Usage

The interactive application is invoked with the commandradsrc. The program accepts problem definition
from standard input or from a file, enabling batch execution.

The command line options are:

radsrc -h
radsrc [-q] [config file]

5

If a configuration file is specified on the command line, then that file is read to obtain the problem data. Oth-
erwise, information is taken from stdin. The -q flag suppresses all output to stdout, including run summaries
and interactive prompting. The -h flag provides command-line syntax help.

RadSrc will first attempt to load the database. If the environment variable for the default database is
present, it will look in the location specified. As shipped, RadSrc is configured to read from the GAMGEN
legacy database, and checks for the RADSRCLEGACYDATA environment variable. If this variable is not
found,radsrcwill check for the non-specific RADSRCDATA variable. If RADSRCDATA is not set, or is
incorrect,radsrcwill look for a directory called “data” in the current directory. If no database can be found,
radsrcwill exit with a message suggesting that the user set the RADSRC DATA environment variable.

RadSrc now requires a specification of the initial isotope mixture and the desired age of the computed
mixture. Isotopes are specified by their common abbreviation (case insensitive) and atomic weight e.g. U-
238 or u238, but not U 238. Meta-stable isotopes have an m suffix, e.g. Pa-234m. The isotope identifier is
followed by the isotope concentration as a atomic percentage. For your convenience, all of the isotopes and
their concentrations may be specified as a single line, separated by whitespace (spaces, tabs, and newlines).
RadSrc will ensure that each isotope you specify exists in the RadSrc database. If you mistype an entry, you
must reenter that isotope (and all following entries if entered on the same line).

When you have entered all of the initial isotopes and their concentrations, enter the keywordage fol-
lowed by the desired age in years. RadSrc will check the totalconcentration to ensure the sum is approxi-
mately 100%. The total concentration need not be exactly 100% to allow the user to specify concentrations
to different precisions. However if the sum is less than 100%or greater than 100.1%, RadSrc will assume a
data entry error and exit with a message.

Example:

>cd radsrc
>bin/radsrc

Enter Sources on one or multiple lines, ending with "age xx.xx" (in years)
The total quantity must be between 100% and 100.1%
Example: U238 95.0 U235 5.0 Age 10
Example: Pa-234m 5e-14

Pa-234 2e-14
U-238 1.0
Age 10

Enter <isotope> <percent> or AGE <years> --> Pb-210 100
Enter <isotope> <percent> or AGE <years> --> brem off
Enter <isotope> <percent> or AGE <years> --> range 100 3000
Enter <isotope> <percent> or AGE <years> --> age 10
Input Composition: (fractional units)
Pb-210 1
Total: 1

Aged Composition: (fractional units)
Hg-206 1.12057e-12
Tl-206 9.24168e-13

6

Pb-206 0.253889
Pb-210 0.732984
Bi-210 0.000451401
Po-210 0.0126763
Total: 1

Problem specifications begin at the prompt and continue until the age keyword and a number are input. New
lines are treated as a word separator (space). Thebrem andrange keywords and their arguments are op-
tional. Thebrem off keyword specifies that bremmstrahlung should not be sampledby CApi::getPhoton
nor included in any generated Monte Carlo input decks. Therange keyword restricts calculation of emitted
gamma lines to the specified energy range. This subsequentlyrestricts sampling byCApi::getPhoton, line
lists, and Monte Carlo input decks.

After entering the problem specification, RadSrc will compute the concentration of isotopes in the aged
mixture and print the results. At this point, the user will have the opportunity to specify the binning structure
for bremsstrahlung radiation. As of this version, RadSrc provides a measured bremsstrahlung spectrum due
to beta decay of234mPa, scaled to the concentration of234mPa present and rebinned as specified by the user.
In general, binned data will have the following options:

Select binning options for Bremsstrahlung:

1) Default Binning
2) Read from a file
3) Equal spaced bins
4) Proportional to Energy Width
5) TART 65 bins (NaI)
6) MORSE 35 bins (NaI)
7) GADRAS 1000 bins (HPGe)

Select (1-7):

Option 1, default binning, is a bin structure specified bylib/dfltbrem.datand may be customized for local
installations. Option 2, read from a file, reads bin boundaries from a user-specified file. A default filename
is suggested, depending on the quantity being binned. Option 3 creates a specified number of bins with
specified maximum and minimum energy boundaries. Option 4 does the same, but varies the bin width
in proportion to the functionk1 + k2E1/2, with k1 andk2 specified by the user andE is the lower energy
boundary of the bin. The remaining options are predefined binstructures. After selecting a binning option,
the user will be prompted for any additional information required by that option.

At this point, the user will be given the option to bin some x-ray and gamma ray lines and keep the
others. These options are presented in a menu similar to the binning options:

Select binning options for gamma lines:

1) Keep all lines
2) Bin all lines
3) Keep the default lines
4) Read the line list from a file

Select (1-4):

7

These options are mostly self-explanatory. Option 3, default lines, refers to a line found inlib/dfltlins.dat.
Option 4, read from a file, reads line energies from a user-specified file. Note that the lists of line energies
must exactly match the line energies listed in the database,and changes in the database should be reflected in
the line energy lists. However, a mechanism is provided to specify approximate energy ranges. By default,
line energies must be specified to 0.1 keV.

If you elect to bin some or all of the lines, the program will restrict its output of unbinned lines to those
that fall within the same energy range as the binned lines. The unscattered photon tally will also be restricted
to this energy range. If you do not bin any lines, you will be prompted to specify a maximum and minimum
energy. If you specified the optionalrange keyword, this range will be used.

The problem specification is completed by selecting a binning structure for binned gamma photons (but
only if you elected to bin photons) and for the scattered photon tally. These selections are made in the same
way the bremsstrahlung binning was selected.

At this point, RadSrc will execute and produce two output files: output.linandoutput.mci. Output.lin
contains lists of all photons lines emitted by radioisotopes in the aged sample and their originating decays.
Output.mcicontains the photon distributions and bin structures for inclusion in an MCNP input file.

5 Installation

The RadSrc Suite is distributed as a single archive containing the source code and isotope data necessary for
operation. Upon extraction, you will have the complete distribution in a self-contained directory structure:

• /bin, /lib — Destination directory for executables and the library.

• /src — Source code and makefile.

• /doc — Documentation and destination for doxygen files.

• /data — Isotope database files.

To install, simply change to the source directory and typemake. This will compile both the library and ap-
plication with the GNU compiler and install them in the appropriate directory. To compile either separately,
typemake radsrc or make libradsrc.

The provided makefile also includes flags for the Intel and Portland Group compilers. To compile using
either of these compilers, include the targetintel or portland on the command line.

If you have doxygen installed on your system, typemake docs to generate the html documentation.
A file that redirects to the main page is provided in the doc directory for your convenience.

To accommodate applications that cannot specify the location of the isotope data base, the RadSrc Suite
will check environment variables for the correct path. Since the RadSrc library can load multiple databases,
each database parser will look for an environment variable specific to the parser. All parsers will fall back to
the RADSRCDATA environment if the parser-specific variable is not set.The GAMGEN legacy database
parser will first check RADSRCLEGACYDATA, then RADSRCDATA to locate the database. If neither
variable is set or no database is found at that location, the library will attempt to load from a subdirectory in
the current directory called “data”.

You may configurelibradsrc to use extended-precision arithmetic when calculating isotope concentra-
tions. To do accomplish this compile withUSE HIGH PRECISION defined, or edit porting.h. You may
also use an external library by editing porting.h. Then,HighPrecisionType must be a typedef to a
class that supports basic arithmetic operators and the exponential function. Note that the RadSrc application
currently only links with the double precision library.

8

References

[1] “MCNPX Version 2.5.0 User’s Manual,” LA-CP-05-0369, Los Alamos National Laboratory (2005).

[2] S. Agostinelli,et. al., “GEANT4 — a simulation toolkit,” Nucl. Inst. Meth. A506, 250-303 (2003).

[3] R. Buck, et. al. “A Multiparticle Monte Carlo Transport Code, User’s Manual, Fifth Edition,” UCRL-
TM-202590, Lawrence Livermore National Laboratory (2002).

[4] T. Gosnell, “Automated calculation of photon source emission from arbitrary mixtures of naturally
radioactive heavy nuclides,” Nucl. Inst. Meth. A299, 682-686 (1990).

[5] K. S. Krane,Introductory Nuclear Physics. John Wiley & Sons:New York (1988).

[6] H. Bateman, “Solution of a system of differential equations occuring in the theory of radioactive trans-
formation,” Proc. Cambridge Phil. Soc.15, 423-427 (1910).

[7] D. S. Pressyanov, “Short solution of the radioactive decay chain equations,” Am. J. Phys.70(4), 444-445
(2002).

A Library API

This appendix describes thelibradsrc API. 2 Libradsrc provides a simplified API for applications solely
interested in computing and sampling photon distributions. A full-featured C++ API is also provided for
complete access to the isotope database and decay product and photon calculations.

Note that all C++ functions are contained with in theradsrc namespace.

A.1 Error Handling

The library declares theCRadSourceExceptionclass for error handling. There are no subtypes of this class
at this time. This class is thrown in the following situations:

• An unrecognized database type is requested, or a database parser is requested to parse a foreign
database type. (Currently, only the GAMGEN legacy databaseis supported).

• The input mixture units are notATOMIC FRACTION.

• No database is loaded at the time calculations are performed.

• If you call an accessor method in an uninitializedCGammaEntry object or dereference an invalid
CPhotonIterator .

2N.B. This section is currently being updated for the 1.3 release. Until then, please refer the the auto-generated doxygen files as
the authoritative reference

9

A.2 Caveats

Please be aware of the following issues.
ASCII to floating-point conversion routines differ from machine to machine. As a result, photon energies

are known to be slightly different on different architectures, despite being constant values that are never
computed.

Finite precision can cause the concentration of some daughter products to be negative at very short times
relative to their half-lives.

A.3 FORTRAN/C/C++ Monte Carlo Interface

In these examples,

LOGICAL SUCCESS
INTEGER*8 HANDLE
CHARACTER*n FILENAME, CONFIGSTRING
INTEGER LENGTH, Z, A, M, N, NMAX
DOUBLE PRECISION CONCENTRATION, E, AGE, LINES[2][NMAX], FOURV[4], DRNG
REAL*4 FRNG
INTRINSIC/EXTRINSIC FRNG, DRNG

Initialization will generally follow one of the following forms:
FORTRAN:

• Programmatically set the initial composition and final age.

CALL RSNEWSOURCE(HANDLE)
CALL ADDISOTOPE(HANDLE,92,238,0,100D0)
SUCCESS = MIX(HANDLE,25D0)

• Load the configuration from a file.

CALL RSNEWSOURCE(HANDLE)
SUCCESS = RSLOADCONFIG(HANDLE,’config.txt’)

• Concatenate a series of character strings into a single string containing the configuration.

CALL RSNEWSOURCE(HANDLE)
DO
CALL RSADDCONFIG(HANDLE,CONFIGSTRING)

END DO
SUCCESS = RSSOURCECONFIG(HANDLE)

C++:

• Programmatically set the initial composition and final age.

CRadSource* handle = newSource();
addIsotope(HANDLE,92,238,0,100.0)
bool success = mix(HANDLE,25.0)

10

• Load the configuration from a file.

Handle handle = newSource();
bool success = loadConfig(handle,"config.txt")

• Concatenate a series of character strings into a single string containing the

Handle handle = newSource();
while(configstring) {
addConfig(handle,configstring);

}
bool success = sourceConfig(handle)

No explicit C API is provided. Instead, C programs should call the FORTRAN API functions (with trailing
underscores) using the prototypes provided.

A.3.1 Create a new radiation decay problem.

Returns or sets an 8-byte buffer as the problem handle. Multiple independent problems can be created, and
are accessed via this handle.

staticCRadSource∗ CApi::newSource (void)

void rsnewsource (char∗pHandle)

CALL RSNEWSOURCE(HANDLE)

A.3.2 Create and execute a new decay calculation problem.

This routine loads configuration information from a file. Thefilename may be either a CHARACTER
variable or string literal. If the filename is the empty string, the library checks the RADSRCCONFIG
environment variable for the filename. If the file is successfully parsed, the problem is set up and the aged
mixture is calculated. The function returns true is successful, false if failed.

static intCApi::loadConfig (CRadSource∗pRadSource, const std::string &filename)

int rsloadconfig (char∗pHandle, char∗ptr, int len)

SUCCESS = RSLOADCONFIG(HANDLE,FILENAME)
SUCCESS = RSLOADCONFIG(HANDLE,’filename.txt’)
SUCCESS = RSLOADCONFIG(HANDLE,’’) for default location

A.3.3 Add an isotope to the input mixture.

Input parameters are atomic number, atomic mass, metastable state, and atomic fraction in percent.

static voidCApi::addIsotope (CRadSource∗pRadSource, int z, int a, int m, double perc)

void rsaddisotope (char∗pHandle, const int &z, const int &a, const int &m, const double &perc)

CALL RSADDISOTOPE(HANDLE,Z,A,M,CONCENTRATION)

11

A.3.4 Get the number of discrete photons.

static intCApi::nLines (constCRadSource∗pRadSource)

int rsnlines (const char∗pHandle)

N = RSNLINES(HANDLE)

A.3.5 Get the first nmax (energy,intensity) discrete photonentries.

Parameters are a 2-by-NMAX double precision array, and NMAX, the maximum number of entries to return.
Entries are returned in sorted order.

static voidCApi::getLines (CRadSource∗pRadSource, double lines[][2], int nmax)

void rsgetlines (char∗pHandle, double lines[][2], const int &nmax)

CALL RSGETLINES(HANDLE, LINES, NMAX)

A.3.6 Get a random photon energy in keV.

Sample a energy from the photon distribution using the random number generator provided. Note that the
FORTRAN and C interfaces have different function names for single and double precision random number
functions.

static doubleCApi::getPhoton (constCRadSource∗pRadSource, double(∗prng)(void))

static doubleCApi::getPhoton (constCRadSource∗pRadSource, float(∗prng)(void))

doublersgetphoton (const char∗pHandle, double(∗prng)(void))

doublersgtrphoton (const char∗pHandle, float(∗prng)(void))

E = RSGETPHOTON(HANDLE, DRNG)
E = RSGTRPHOTON(HANDLE, FRNG)

A.3.7 Get a random 4-vector E,px,py,pz in natural units (keV).

Sample an isotropic four-vector from the photon distribution using the random number generator provided.
Note that the FORTRAN and C interfaces have different function names for single and double precision
random number functions.

static voidCApi::get4V (constCRadSource∗pRadSource, double e[4], double(∗prng)(void))

static voidCApi::get4V (constCRadSource∗pRadSource, double e[4], float(∗prng)(void))

void rsget4v (const char∗pHandle, double e[4], double(∗prng)(void))

void rsgtr4v (const char∗pHandle, double e[4], float(∗prng)(void))

CALL RSGET4V(HANDLE, FOURV, DRNG)
CALL RSGTR4V(HANDLE, FOURV, FRNG)

12

A.3.8 Store a summary into a character variable.

Writes the input and output mixtures to a STL string, char array, or CHARACTER variable. Note that in the
C interface, the third parameter is the buffer length. The function returns the number of characters placed in
the buffer. The string isnot nul-terminated.

static std::stringCApi::getReport (constCRadSource∗pRadSource)

int rsgetreport (const char∗pHandle, char∗ptr, int len)

LENGTH = RSGETREPORT(HANDLE,BUFFER)

A.3.9 Add to the growing string of configuration information.

Input may be either a CHARACTER variable or a string literal.

static voidCApi::addConfig (CRadSource∗pRadSource, const std::string &input)

void rsaddconfig (char∗pHandle, char∗ptr, int len)

CALL RSADDCONFIG(HANDLE,CONFIGSTRING)
CALL RSADDCONFIG(HANDLE,’U238 100’)

A.3.10 Parse the configuration information and perform the calculations.

The function parses the configuration information providedby addConfig(). If successful, it sets up the
problem and ages the mixture. It returns true if successful,false if failed.

static intCApi::sourceConfig (CRadSource∗pRadSource)

bool rssourceconfig (char∗pHandle)

SUCCESS = RSSOURCECONFIG(HANDLE)

A.3.11 Age the input mixture.

This function ages the mixture set by addIsotope. The parameter is the age in years. Returns true if success-
ful, false if failed.

static intCApi::mix (CRadSource∗pRadSource, double age)

int rsmix (char∗pHandle, const double &age)

SUCCESS = RSMIX(HANDLE,AGE)

A.3.12 Sort the photon list.

Sorts the photon list by ascending energy or descending intensity. Parameter is 1 for energy and 2 for
intensity.

static voidCApi::sort (CRadSource∗pRadSource, int field)

void rssort (char∗pHandle, const int &field)

CALL RSSORT(HANDLE,1) for energy
CALL RSSORT(HANDLE,2) for intensity

13

A.4 Class CIsotope

The CIsotope class is the fundamental identifier for isotopes in the library. Nuclear isomers are distin-
guished by a metastable state number. TheCIsotopeclass also possesses convenient conversion functions
to and from isotope names.

A.4.1 Construct a CIsotope

CIsotope()

CIsotope(int z, int a, int mm=0)

A.4.2 get Z, A, and metastable level

int getAtomicNumber (void) const

int getMassNumber(void) const

int getMetastableNumber(void) const

A.4.3 Obtain the canonical name of the isotope.

These methods create the canonical name of the isotope. Names are of the form Zzz-AAAmN, with a
maximum size of 9 characters. Invalid isotopes are named ”H-0”.

void toString (char∗str) const

void toString (std::string &str) const

std::stringtoString () const

A.4.4 Parse variations of the isotope name.

These methods define theCIsotope by parsing a string. The ’-’ is optional but must not be whitespace.
Capitalization is also ignored.

CIsotope& fromString (const char∗str)

CIsotope& fromString (const std::string &str)

A.4.5 Is this a valid isotope? (conversion from strings can fail)

If the CIsotope is not initialized orfromString fails, this method will return true.

bool isValid (void) const

A.5 Class CDatabaseManager

This class creates isotope databases from database-specific routines and classes.CIsotopeDatabaseand
CDatabaseManagerprovide a uniform interface for accessing isotope information regardless of the source,
storage, or formatting of the underlying data. TheCDatabaseManagerclass is a singleton.

14

A.5.1 Enumerations

enumDatabaseType{ LEGACY , ENSDF, ENSDF ERRATA }

A.5.2 Typedef

typedef std::pair< int, std::string> DatabaseIdentifier

A.5.3 Obtain a pointer to the library’s CDatabaseManager.

A single CDatabaseManagerobject manages all the databases in the library. This function will return a
pointer to it.

staticCDatabaseManager∗ getDatabaseManager(void)

A.5.4 Obtain a pointer to a particular isotope database.

This function loads an isotope database and returns a pointer to it if successful. This first parameter is an
enum of typeDatabaseType. Currently onlyLEGACY , the GAMGEN database format, is supported. This
parameter selects which database parser is to be used. The second parameter is an identifier to a specific
database. The meaning of this parameter is defined by the selected parser, but is typically one or more
filenames. Databases with the same parser and identifier are unique and need only be loaded once.

A.6 Class CIsotopeDatabase

TheCIsotopeDatabaseclass maintains a mapping fromCIsotopeto CIsotopeData, and provides methods
and iterators to access isotope data in the mapping.

A.6.1 Typedefs

typedef std::map< CIsotope, CIsotopeData∗ > IsotopeList

typedef std::map< CIsotope, CIsotopeData∗ >::const iteratorIsotopeListIterator

A.6.2 Get the library’s isotope database manager object.

staticCIsotopeDatabase∗ getIsotopeDatabase(int type, std::string info=””)

A.6.3 Obtain information on an isotope.

Returns a pointer to aCIsotopeDataobject if the database contains an entry for the isotope, or 0if not.

constCIsotopeData∗ getIsotopeData(constCIsotope&iso) const

A.6.4 Check if an isotope is present in the database.

bool hasIsotopeData(constCIsotope&iso) const

15

A.6.5 Iterators for accessing isotope data.

These methods return iterators to access isotope data for each isotope in the database.

IsotopeListIterator isotopesBegin(void) const

IsotopeListIterator isotopesEnd(void) const

A.6.6 Get the number of isotopes in database.

int getNIsotopes(void) const

A.7 Class CIsotopeData

The CIsotopeDataclass encaspulates the basic isotope constants and a listing of possible decays. Decay
entries are distinct even if they ultimately decay to the same daughter isotope. For example, multiple beta
decay branches to different nuclear states, which then immediately decay, can each have an entry in the
database with unique associated photon emissions.

A.7.1 Typedef

typedef std::vector< CDecayMode>::const iteratorDecayIterator

A.7.2 Get the decay rate of a particular branch.

Units are disintegrations per second. The parameter is either a branch number starting with zero orDecayIt-
erator. Units are in disintegrations per second.

doublegetDecayRate(int branch) const

doublegetDecayRate(constDecayIterator &it) const

A.7.3 Get the decay rate of the isotope

Units are disintegrations per second.

doublegetDecayRate(void) const

A.7.4 Decay branch iterators

DecayIterator decaysBegin(void) const

DecayIterator decaysEnd(void) const

A.7.5 Get the number of decay branches.

int getNDecayModes(void) const

A.7.6 Get the isotope which this entry describes.

constCIsotope& getIsotope(void) const

16

A.7.7 Get the canonical name of this isotope.

const char∗ getName(void) const

A.7.8 Get the standard average atomic mass for the isotope.

Units are in grams.

doublegetAtomicMass(void) const

A.7.9 Get the halflife of the isotope.

Units are in seconds.

doublegetHalflife (void) const

A.8 Class CDecayMode

The CDecayModeclass encapsulates the information about a particular decay. This includes the branch
fraction, the discrete photon lines, and the average bremsstrahlung spectrum.

A.8.1 Enumerations

enumDecayType{ UNSPECIFIED, ALPHA , BETA GENERIC , BETA MINUS , BETA PLUS,
ELECTRON CAPTURE, INTERNAL TRANSITION , ALPHANEUTRON , BETANEUTRON
}

A.8.2 Typedefs

typedef std::vector< CPhoton>::const iteratorPhotonIterator

typedef std::vector< double>::const iteratorBremBoundaryIterator

typedef std::vector< double>::const iteratorBremIntensityIterator

A.8.3 Get the decay type.

This function returns the type of decay. The usefulness of this value is entirely dependent upon the quality
of the underlying source of the decay information and the routine that parses it.

int getDecayType(void) const

A.8.4 Get the daughter isotope of this particular decay.

The method returns the daughter isotope of the decay, which may be a specific isomer.

constCIsotope& getDaughter(void) const

17

A.8.5 Get the branch fraction of this particular decay.

This method returns the branching ratio of this particular decay.

doublegetBranchFraction (void) const

A.8.6 Get number of photons produced in decay.

int getNPhotons(void) const

A.8.7 Obtain iterators for the discrete photons produced bythis decay.

PhotonIterator beginPhotons(void) const

PhotonIterator endPhotons(void) const

A.8.8 get number of brem bins

int getNBremBins(void) const

A.8.9 Obtain iterators for the bremsstrahlung energy bin boundaries.

BremBoundaryIterator beginBremBoundaries (void) const

BremBoundaryIterator endBremBoundaries (void) const

A.8.10 Obtain iterators for the bremsstrahlung bin intensities.

BremIntensityIterator beginBremIntensities (void) const

BremIntensityIterator endBremIntensitities (void) const

A.9 Class CPhoton

The CPhoton class is a database entry for a photon. It contains the photonenergy, the probability of
emission, and relative uncertainty in that probability.

A.9.1 Get the photon energy.

Units are keV.

doublegetEnergy(void) const

A.9.2 Get the emission probability.

Probability is per decay.

doublegetFraction (void) const

18

A.9.3 Get the relative error in the emission probability.

Error is ∆F
F .

doublegetError (void) const

A.10 Class CDecayComputer

The CDecayComputer class stores the input and aged mixtures, and retains the time dependence of the aged
concentrations in a mapping ofCIsotope to CBatemanSolution.

A.10.1 Convert input to canonical units.

At this time, the only valid unit selection isATOM FRACTION . This also the default selection for the
object and this call is optional.

void normalizeInputUnits (void)

A.10.2 Append a radioisotope to the input mixture list.

The parameters are a fully constructedCIsotopeclass and the quantity of that isotope in unspecified units.
The units will later be defined with a call tonormalizeInputUnits .

void addInputItem (constCIsotope&iso, double amount)

A.10.3 Reset the object.

This method clears all data and settings in the object, except the database selection.

void clear ()

A.10.4 Compute the isotope concetrations at a particular age.

This method causes the decay chain to be traversed and the time dependence of each isotope in the chain is
computed. These are evaluated at the specified age to producethe aged mixture. The parameter is the age
in years.

CIsotopeMixture & ageMixture (double age)

A.10.5 Get the detailed solution.

Returns a mapping ofCIsotopeto CBatemanSolution, which contains the full time dependence and parent-
age of every isotope in the decay chain.

const std::map< CIsotope, CBatemanSolution> & getFullSolution (void) const

A.10.6 Get the detailed solution for an Isotope.

Returns aCBatemanSolutionobject, which contains the full time dependence and of the isotope.

constCBatemanSolution∗ getSolution(constCIsotope&isotope) const

19

A.10.7 Get mixture at a particular time.

Returns a mapping ofCIsotopeto double, giving the concentration of each isotope in the aged mixture. The
units are in atomic fraction.

constCIsotopeMixture & getAgedMixture (void) const

A.10.8 Get the initial mixture.

Returns a mapping ofCIsotope to double, giving the concentration of each isotope in the initial mixture.
The units are in atomic fraction.

constCIsotopeMixture & getInputMixture (void) const

A.10.9 Look up some data in the current database.

Shortcut to obtain an isotope data entry from the database currently being used by thisCDecayComputer
object.

constCIsotopeData∗ getIsotopeData(constCIsotope&isotope) const

A.10.10 Get the current isotope database.

Get the current isotope database being used by thisCDecayComputerobject.

constCIsotopeDatabase∗ getIsotopeDatabase(void) const

A.10.11 Set the database to be used.

Set the isotope database to be used for future calculations.This action resets the object as indicated in the
methodclear.

void initialize (constCIsotopeDatabase∗pisotopedb)

A.11 Class CBatemanSolution

The CBatemanSolution stores the coefficients and decay constants for each term in the solution for a
particular isotope that may appear in the aged mixture. It also retains a listing (as an STL set) of ultimate
parent radioisotopes in the initial mixture contributing the isotope.

A.11.1 Get the isotope for which this object is a solution.

constCIsotope& forIsotope (void) const

A.11.2 Get a list of initial isotope parents.

Get a list (as an STL set) of radioisotopes in the initial mixture that eventually decayed into this
isotope.

const std::set< CIsotope> & getChainParents(void) const

20

A.12 Class CIsotopeMixture

This class is a mapping fromCIsotopeto double, providing the concentrations of all the isotopesin the list.

A.12.1 Compute the average atomic mass.

Computes the average atomic mass of the mixture, thus givinggrams/mol.

doublecomputeAverageMass(void) const

A.12.2 Set the isotope database

Sets the isotope database to be used for information about isotopes in this mixture.

void setDatabase(constCIsotopeDatabase∗)

A.13 Class CPhotonComputer

TheCPhotonComputer class stores lists of photon energy and intensity and maintains the association be-
tween a photon and its emitting isotope(s) in an aged mixture. A CPhotonComputer is permanently asso-
ciated with aCDecayComputerobject, and its associated isotope database.CPhotonComputer provides
an iterator class to access the sorted photon list.

A.13.1 Enumerations

enum{ ENERGY = 0, INTENSITY = 1 }

enum{ PERMOLE , PERGRAM }

enumBinSubject { BIN BREM , BIN GAMMA }

A.13.2 Typedefs

typedef std::map< CIsotope, double> IsotopeMixture

A.13.3 Create and sort the list of emitted discrete photons.

Computes the discrete lines emitted by the decay of elementspresent in the aged mixture in the associated
CDecayComputerobject. This function may be called again to change the sort order without repeating the
calculation. The parameter is one of the enumsENERGY (ascending energy) orINTENSITY (descending
intensity).

void computeGammas(int sortparam=ENERGY)

21

A.13.4 Get iterators for the lists of photons

These methods return begin and end iterators for the complete list of photons, and the subset list of photons,
respectively.

CPhotonIterator beginGammas(void) const

CPhotonIterator endGammas(void) const

CPhotonIterator beginSelectedGammas(void) const

CPhotonIterator endSelectedGammas(void) const

A.13.5 Get the number of discrete lines in the list of photons.

These methods return the size of the complete list of discrete photons, and the size of the subset list, respec-
tively.

int getNGammas(void) const

int getNSelected(void) const

A.13.6 Set the bin boundaries.

These methods set the bin boundaries of the bremsstrahlung and non-selected (binned) photon lines. The
first parameter is one of the enumsBIN BREM or BIN GAMMA . The second parameter may be either an
STL vector of doubles listing the bin boundary energies, or an array of doubles. In the later case, the length
of the array must be passed as the third argument.

void setBinning (BinSubject what, const std::vector< double> &)

void setBinning (BinSubject what, const double∗, int)

A.13.7 Select a subset of the discrete lines and bin the rest.

These methods subset the list of photons according to a list of desired energies. Photons that are not in the
list of desired energies are combined into a distribution ofbinned intensities. Energies may be provided as
either an STL vector of doubles, or an array of doubles.

Care must be taken to ensure that the energies in the list and the energies in the isotope database are
identical in the machine’s native representation.

void selectGammas(const std::vector< double> &v)

void selectGammas(const double∗lines=0, int n=0)

A.13.8 Get the bremsstrahlung binned data.

Returns aCBinnedDataobject which contains the bin boundaries and bin intensities of the bremsstrahlung
distribution.

constCBinnedData& getBrem (void) const

22

A.13.9 Get the binned lines data.

Returns aCBinnedData object which contains the bin boundaries and bin intensities of thenon-selected
disrete lines.

constCBinnedData& getBinnedGammas(void) const

A.13.10 Sample the photon distributions.

These methods sample the combined discrete and bremsstrahlung intensity distribution. The first two meth-
ods return a photon energy in keV, while the second two methods fill an array of energy and momentum
values in natural units (keV). In the latter case, the first parameter is an array of four doubles{E, px, py, pz}.
All four methods require a pointer to a function returning either a single- or double- precision random
number in the range [0,1).

doublegetPhoton(double(∗rng)(void)) const

doublegetPhoton(float(∗rng)(void)) const

void getFourVector (double e[4], double(∗rng)(void)) const

void getFourVector (double e[4], float(∗rng)(void)) const

A.14 Class CPhotonIterator

TheCPhotonIterator class combines information fromCPhotonComputerandCDecayComputerto pro-
vide complete information about emitted photon lines.CPhotonIterator follows const forward iterator
semantics.CPhotonIterator dereferences to a constCGammaEntry object.

N.B. References theCGammaEntry are valid only while while theCPhotonIterator points to it. If
the application requires theCGammaEntry to persist then a copy should be made.

A.15 Class CGammaEntry

TheCGammaEntry class encapsulates all the information known about a discrete photon line, including
its origins in the decay chain.

A.15.1 Typedefs

typedef std::set< std::pair< CIsotope, CIsotope> > DecayList

typedef std::set< CIsotope> ParentList

A.15.2 Get the isotope in the initial mixture that produces this line.

This method returns a list (as an STL set) of all the isotopes in the initial mixture that decayed into an isotope
that subsequently emitted this line.

constParentList & getChainParentIsotopes(void) const

23

A.15.3 List the decays that produce a line.

This method returns a list (as an STL set of isotope pairs) of parent and daughter isotopes that produce this
line.

constDecayList & getDecays(void) const

A.15.4 List the isotopes that decacyed and emitted a line.

This method returns a list (as an STL set) of all the isotopes that emit this line in the process of, or as a result
of, decaying.

constParentList & getParentIsotopes(void) const

A.15.5 Get a formatted list decays and ultimate parent isotopes of a line.

This method returns an STL string containing a list of isotopes in the initial mixture that eventually produce
this discrete line. These isotopes are printed in square brackets []. It then lists the specific decays, parent to
daughter, separated by arrows, ->.

std::stringgetParentDescription(void) const

A.15.6 Get the photon energy.

This method returns the photon energy in keV.

doublegetEnergy(void) const

A.15.7 Get the photon intensity

This method returns the photon intensity in the current units. (default: photons/sec/gram of input mixture)
HighPrecisionType is defined in porting.h at compile time by the user.

HighPrecisionType getIntensity(void) const

A.16 Class CBinnedData

CBinnedData is essentially a structure describing binned data. Its members are STL vectors of doubles or
HighPrecisionTypecontaining the bin energy boundaries, the bin intensities,the cumulative intensity and
total intensity.

A.16.1 Members

std::vector< double> m energy

std::vector< HighPrecisionType> m intensity

std::vector< HighPrecisionType> m cumulative

HighPrecisionType m sum

24

